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Abstract We present a semiexplicit density functional for the energy of an N -elec-
tron system based on a modified Thomas–Fermi–Dirac approach. The resulting equa-
tions are analytically solved for a non-interacting electron atom, which gives insight
about the precision that can be reached with the present method. The computational
procedure and results for the application to real atoms are also described.

Keywords Density functionals · Thomas–Fermi–Dirac · Electron structure ·
Radial expectation values

1 Introduction

Explicit density-functional methods, based on the old Thomas–Fermi model and its
refinements [1–3], still attract research interest [4–6], and because of their simplicity,
they have been applied to very complex systems such as clusters [7,8], nanostructures
like quantum dots [9,10], as well as in different problems where atomic potentials
take place, like scattering including polarization effects [11]. It can also be expected
that they will be specially interesting in the future for the challenging study of very
complex electronic systems, as biological systems, provided some of their deficiencies
are corrected.

In recent work [12,13] we have performed quantum mechanical corrections in
the Thomas–Fermi–Dirac atomic model with the result that average properties are
described with a few percent errors with respect to Hartree–Fock estimates. It is inter-
esting to know up to what level of accuracy this model is predictable, and to determine
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if some cancellation of errors gives more accurate results than what could be expected.
For this purpose a test for a system exactly solvable and for which the present model
can be also solved, is of obvious interest.

In this work we will improve the basis and application of this method as well as
performing significative new tests. First, we will provide in Sect. 2 the theoretical
basis of the method in the framework of density-functional theory, consisting of a
semi-explicit density functional for the energy. Second, we will propose in Sect. 3 a
scheme of resolution of the resulting equations for atoms which will correct some
deficiencies of the previous approach. In Sect. 4 we will perform a test of the method
for a exactly solvable system: the non-interacting electron atom. This test will give
some information about the accuracy of the present approach, and will allow us to
perform a further simplification in the resolution scheme. This simplified approach
will be applied to real atoms in Sect. 5, and finally, some concluding remarks will be
given in Sect. 6.

2 The semiexplicit energy functional

We obtain a density-functional for the energy of an N -electron system subject to a
potential v(�r), containing the coulomb field of a nucleus located at the origin. For this
purpose we split IR3 in two regions of integration for a given r0, i.e. R1 = {r ≤ r0}
and R2 = {r > r0}.

For obtaining the energy functional we perform the following assumptions:

(i) the Hartree–Fock single-particle expression is the starting point, therefore no
correlations are included.

(ii) the electronic wavefunctions, further from the nucleus than a distance r0, are
approximated by local plane waves, as in the Thomas–Fermi–Dirac model
(exchange is included in region R2 semiclassically).

(iii) exchange is neglected in region R1, which will be justified below.

The resulting energy functional is:

E[ρ] = E1[{φi (ρ)}] + E2[ρ] + U12[{φi (ρ)}, ρ], (1)

where

E1 = T1[{φi (ρ)}] + V1[{φi (ρ)}] + U11[{φi (ρ)}], (2)

E2 = T2[ρ] + V2[ρ] + U22[ρ] + K2[ρ], (3)

and the particular terms are:

T1 =
N∑

i=1

∫

R1

d�r φ∗
i (�r)

(
−1

2
∇2

)
φi (�r), (4)
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V1 =
N∑

i=1

∫

R1

d�r φ∗
i (�r)v(�r)φi (�r), (5)

U11 = 1

2

N∑

i, j=1

∫

R1

d�r
∫

R1

d �r ′ φ∗
i (�r)φ∗

j (
�r ′) 1

|�r − �r ′|φi (�r)φ j ( �r ′), (6)

U12 =
N∑

i=1

∫

R1

d�r φ∗
i (�r)φi (�r)

∫

R2

d �r ′ ρ( �r ′)
|�r − �r ′| , (7)

T2 = Ck

∫

R2

d�r [
ρ(�r)

]5/3
, (8)

being

Ck = 3

10

(
3π2

)2/3
, (9)

V2 =
∫

R2

d�r v(�r)ρ(�r), (10)

U22 = 1

2

∫

R2

d�r
∫

R2

d �r ′ ρ(�r)ρ( �r ′)
|�r − �r ′| , (11)

and

K2 = Ce

∫

R2

d�r [
ρ(�r)

]4/3
, (12)

being

Ce = −3

4

(
3

π

)1/3

. (13)

The terms of E1 and U12 depend implicitly on ρ by means of the relationship:

ρ(�r) =
N∑

i=1

φ∗
i (�r)φi (�r). (14)

It may be expected that the integration of the exchange energy in region R1 give
a small contribution, since the region is assumed to be small. Therefore, the l �= 0
orbitals are negligible due to the rl behavior for r → 0, and because of the Kronecker
delta in spin, only n �= n′ appears in the sum for the contribution of region R1 to the
exchange energy:
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∑

n �=n′

∫

R1

d�r φ∗
ns(�r)φn′s(�r)

∫
d �r ′ φ∗

n′s( �r ′) 1

|�r − �r ′|φns( �r ′), (15)

and the overlap between φn and φn′ in the integration in R1 must be small.
The minimization of E[ρ] must be performed keeping the normalization condition

fixed:

N =
N∑

i=1

∫

R1

d�rφ∗
i (�r)φi (�r) +

∫

R2

d�rρ(�r). (16)

The functional derivative of the functionals restricted to the region of integration
R1 is performed through the orbitals φi . This leads to the single-particle equations:

[
−1

2
∇2 + V (�r)

]
φi (�r) = εiφi (�r), �r ∈ R1, (17)

whilst the functional derivative in the region R2 is done explicitly with respect to ρ

and leads to:

5

3
Ck[ρ(�r)]2/3 + Ce[ρ(�r)]1/3 + V (�r) + λ = 0, �r ∈ R2. (18)

In both expressions V (�r) denotes:

V (�r) = v(�r) +
∫

ρ( �r ′)
|�r − �r ′| d �r ′. (19)

For the resolution of Eqs. 17–18 the normalization condition and appropiate match-
ing conditions for the density at r0 should be imposed.

3 Description of isolated atoms

For isolated atoms, spherically symmetric solutions for ρ(�r) can be found. In the region
R1 = {r < r0}, an asymptotic solution of Eq. 17 can be found using an expansion of
V (r) in powers of r . In a previous work [12] we fitted the potential obtained from the
Thomas–Fermi–Dirac model, which overstimates the screening of the nuclear charge,
but this alternative can be improved using consistently Eq. 19 with the density of our
present approach. We will use the expansion of this equation for small r , in terms of
density quantitites:

V (r) = − Z

r
+ V0 − V2r2 + V3r3 + O(r4), (20)
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where

V0 = 〈r−1〉, (21)

V2 = 2π

3
ρ(0), (22)

V3 = 2π

3
ρ(0)Z = Z V2, (23)

and the Kato’s cusp-condition (ρ′(0) = −2Zρ(0)) has been used. It must be noted
that no term on r appears, which is a difference with respect to our previous work [12],
where a fit with −Z/r + V0 + V1r was utilized, and V1 took into account effectively
greater powers of r .

Using Eq. 20 we can solve the single particle equation (17) up to order r5 by means
of:

φi (r) = ai

(
1 + bir + cir

2 + dir
3 + fi r

4 + gir
5
)
, (24)

obtaining all the parameters in terms of two arbitrary values, which we have chosen
to be ai and ci , with the result for |φi (r)|2:

|φi (r)|2 = a2
i

[
1 − 2Zr + (2ci + Z2)r2 + Z

3
(Z2 − 10ci )r

3

+ 1

30

(
48c2

i − 11Z4 + 38Z2ci − 6V2

)
r4

− Z

75

(
168c2

i − 36V2 − 42Z2ci − Z4
)

r5
]
, (25)

and

εi = −3ci + Z2 + V0. (26)

As we will match electron densities, we will focus on the electron density in region
R1

ρ1(r) =
N∑

i=1

|φi (r)|2, (27)

instead on the individual orbitals, by defining the global parameters A = ∑
i a2

i and
C = ∑

a2
i c2

i /A. The sum
∑

i a2
i c2

i , which only appears in the forth and fifth-order
terms, is approximated by AC2 as it was justified in previous work [12]. We obtain:
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ρ1(r) = A

[
1 − 2Zr + (2C + Z2)r2 + Z

3
(Z2 − 10C)r3

+ 1

30
(48C2 − 11Z4 + 38Z2C − 6V2)r

4

− Z

75
(168C2 − 36V2 − 42Z2C − Z4)r5

]
. (28)

The method for solving the present approach reduces now to solve Eq. 18, obtaining
the density in the region R2, which will be denoted ρ2(r). This resolution is simi-
lar to that of the Thomas–Fermi–Dirac model, but restricted to this region and using
appropriate boundary conditions (see [12,13]).

We impose the matching conditions ρ1(r0) = ρ2(r0) and ρ′
1(r0) = ρ′

2(r0) to get
the values of A and C . These parameters provide new values for the parameters of
the potential. The new potential gives a new density and the process iterates until
consistency is found with the correct normalization.

The energy is finally obtained by Eq. 1. We will split its expression in two terms:

E =
(

E1 + 1

2
U12

)
+

(
E2 + 1

2
U12

)
, (29)

where

E1 + 1

2
U12 =

∫

R1

d�re1(r), (30)

and the energy density can be written as:

e1(r) =
∑

i

φ∗
i

[
εi − 1

2

(
V (r) + Z

r

)]
φi . (31)

If we substitute the potential given by Eq. 20, we will only use terms up to r3 in φi

for consistency. Using also Eq. 26 and the parameters A and C defined above, we can
express:

e1(r) =
[
−3C + Z2 + V0 − 1

2
(V0 − V2r2 + V3r3)

]
ρ1(r), (32)

using the same approximation for AC2 mentioned above.
The second term can be written as:

E2 + 1

2
U12 =

∫

R2

d�re2(r), (33)
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where

e2(r) = Ck[ρ(r)]5/3 + Ce[ρ(r)]4/3 + 1

2

[
V (r) − Z

r

]
ρ(r), (34)

and will be evaluated using numerical integration.
The only parameter which remains free is the value of the matching point r0. In

previous versions of this model [12], it was fixed by the condition e1(r0) = e2(r0), i.e.
the one that makes the energy density continuous. However, since the energy density
is not uniquely defined, this condition does not seem to come from a fundamental
argument. We will study the role of r0 in a benchmark system that can be analytically
solved.

4 Test of the model for a system of electrons in a bare coulomb field

For a system of non-interacting electrons attracted by a bare nucleus v(r) = −Z/r
(i.e. Bohr’s atom), the exact solution is known and this model can be solved also
exactly. Therefore, it is a benchmark system for testing the present approach.

Moreover, this theoretical system has also been also classically employed for com-
paring semiclassical methods with exact solutions for atomic properties depending
on strongly bound electrons. In particular this comparison for the energy led to the
following asymptotic expression for the energy of a neutral atom [14]:

E = −0.7687Z7/3 + 1

2
Z2 − 0.294Z5/3. (35)

This formula, with errors less than 1% for most atoms, was obtained by adding to the
Thomas–Fermi energy estimation the so-called Scott correction [14]. This was found
by a comparison of the semiclassical and exact energies of a non-repulsive closed-
shell electron atom, from the assumption that the main correction to the semiclassical
estimation resides on the electrons closest to the nucleus. Then, this correction was
estimated by neglecting the electron–electron interaction.

This is also the aim of this work, where we intend to improve the semiclassical
methods in the near-nuclear region, and to correct the semiclassical estimations of all
atomic properties in a similar way as the Scott correction improves the energy.

For these reasons we have solved the present model for a system of N electrons
in a bare coulomb field. Assuming that the main deficiencies of the semiclassical
approaches come from the description of the near-nuclear region, where the nuclear
attraction dominates the electron–electron repulsions, we can estimate the accuracy of
the present method for real atoms from the accuracy of its approach for these systems.

The energy of a closed-shell system of this type, can be easily expanded in powers
of N−1/3 when the number of electrons, N , is large:

Eex ∼ Z2

[
−

(
3

2

)1/3

N 1/3 + 1

2
− 1

18

(
3

2

)2/3

N−1/3 + O
(

N−2/3
)]

. (36)
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Other density-dependent properties, such as the density at the nucleus and the
radial expectation values are easily obtained from the hydrogenic orbitals, and can be
expanded in powers of N−1/3:

ρ(0)ex ∼ 2

π
ζ(3)Z3, (37)

〈r−2〉ex ∼ 2π2

3
Z2, (38)

〈r−1〉ex ∼ 2

(
3

2

)1/3

Z N 1/3 − Z − 1

6

(
2

3

)1/3

Z N−1/3 + O
(

Z N−2/3
)
, (39)

〈r 〉ex ∼ 3

4

(
3

2

)2/3

Z−1 N 5/3 + 1

8

(
5

23/231/3 − 3

)
Z−1 N + O

(
Z−1 N 2/3

)
,

(40)

and

〈r2〉ex ∼ 9

8

(
3

2

)1/3

Z−2 N 7/3 + 1

16

(
3

2

)1/3
[

7 − 9

(
3

2

)1/3
]

Z−2 N 5/3

+ O
(

Z−2 N 4/3
)
. (41)

We will compare the estimations of the present approach with all these values.
The original Thomas–Fermi method, applied to these systems, was able to take into
account the first term of the expressions for Eex, 〈r−1〉ex, 〈r 〉ex and 〈r2〉ex, however,
the values for ρ(0)ex and 〈r−2〉ex were infinity.

The present approach for these systems can be analitically solved. The U11, U12,
U22 and K2 terms in Eq. 1 are not present since they are caused by the repulsion among
the electrons. The density in region R1 is given by

ρ1(r) = A

[
1 − 2Zr + (2C + Z2)r2 + Z

3
(Z2 − 10C)r3

]
, (42)

where we have neglected the fourth and fifth-order terms for symplicity and to keep
consistency with the energy density, which now can be written as:

e1(r) = A(Z2 − 3C)

[
1 − 2Zr + (2C + Z2)r2 + Z

3
(Z2 − 10C)r3

]
. (43)

The contribution to the energy of region R1 is therefore given by:
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E1 = 4π

r0∫

0

r2e1(r)dr

= 4π A(Z2 − 3C)r3
0

[
1

3
− Z

2
r0 + 1

5
(2C + Z2)r3

0 + Z

18
(Z2 − 10C)r4

0

]
,

(44)

and the fraction of electrons in this region is:

N1 = 4π

r0∫

0

r2ρ1(r)dr

= 4π Ar3
0

[
1

3
− Z

2
r0 + 1

5
(2C + Z2)r3

0 + Z

18
(Z2 − 10C)r4

0

]
, (45)

which is a particular case of the one-electron radial expectation values, given by:

〈rk〉1 = 4π

r0∫

0

rk+2ρ1(r)

= 4π Ark+3
0

[
1

k + 3
− 2Z

k + 4
r0 + 2C + Z2

k + 5
r2

0 + Z3 − 10ZC

3(k + 6)
r3

0

]
. (46)

The description of region R2 is reduced to:

5

3
Ck[ρ2(r)]2/3 − Z

r
+ λ = 0, �r ∈ R2, (47)

which gives:

ρ2(r) = 1

3π2

(
2Z

r

)3/2 (
1 − r

rl

)3/2

, r ≤ rl , (48)

where rl = Z/λ and represents the atomic radius.
Integrals of ρ2 can be calculated in powers of t = r0/rl , assuming this ratio is

small. In particular, for the radial expectation values of orders greater than −2, we
obtain:

〈rk〉2 = 4

3π
(2Z)3/2

⎡

⎣
rl∫

0

rk+ 1
2

(
1 − r

rl

)3/2

dr −
r0∫

0

rk+ 1
2

(
1 − r

rl

)3/2

dr

⎤

⎦

= 4

3π
(2Z)3/2

[
�(k + 3/2)�(5/2)

�(k + 4)
r

k+ 3
2

l − (r0/rl)
k+ 3

2

k + 3
2
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× 1 F2(k + 3/2;−3/2, k + 5/2; r0/rl)

]

= 4

3π
(2Z)3/2 �(k + 3/2)�(5/2)

�(k + 4)

(r0

t

)k+ 3
2

×
[

1 − �(k + 4)

(k + 3
2 )�(k + 3/2)�(5/2)

tk+ 3
2 + O

(
tk+ 5

2

)]
, (49)

where 1 F2 denotes a hypergeometric function. For 〈r−2〉, since the above decompo-
sition is not possible, we will make use of a linear transformation formula for the
hypergeometric function obtained:

〈r−2〉2 = 4

3π
(2Z)3/2

rl∫

r0

r− 3
2

(
1 − r

rl

)3/2

dr

= 8

15π
(2Z)3/2r−1/2

l

(
1 − r0

rl

)5/2

1 F2(5/2; 3/2, 7/2; 1 − r0/rl)

= 8

15π
(2Z)3/2r−1/2

l

(
1 − r0

rl

)5/2
[

5

(
rl

r0

)1/2

1 F2(1; 2, 1/2; r0/rl)

− 15π

4
1 F2(5/2; 3/2, 3/2; r0/rl)

]

= 8

3π
(2Z)3/2r−1/2

0

[
1 − 3π

4
t1/2 + O(t)

]
. (50)

The energy density in this region can be written as:

e2(r) = Ckρ
5/3
2 − Z

r
ρ2 = −

[
1 − 3

5

(
1 − r

rl

)]
Z

r
ρ2(r), (51)

and the integration in region R2 gives:

E2 = − Z5/2r1/2
0

21/2 t−1/2
[

1 − 64

15π
t1/2 + O

(
t5/2

)]
. (52)

The conditions of continuity of ρ and ρ′ are applied now. Using ρ1(r0)/ρ
′
1(r0) =

ρ2(r0)/ρ
′
2(r0) and defining µ = Zr0 and y = C/Z2 we find:

1 − 2µ + (2y + 1)µ2 + (1 − 10y)µ3/3

2 − 2(2y + 1)µ − (1 − 10y)µ2 = 2

3
µ(1 − t), (53)
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and from ρ1(r0) = ρ2(r0) the value of A can be obtained:

A = 1

3π2

(
2Z

r

)3/2
(1 − t)3/2

1 − 2µ + (2y + 1)µ2 + (1 − 10y)µ3/3
. (54)

The definitions of µ and y are inspired from the numerical scaling found for r0 and
C in the previous work, and as we will see immediately, these new parameters will
result independent of Z and N , at first order.

The parameter t can be found from the normalization condition:

N = N1 + N2 = N1 + 1

3
√

2

(µ

t

)3/2
[

1 − 32

3π
t3/2 + O

(
t5/2

)]
, (55)

which can be solved for t and shows up how this parameter scales with N−2/3. For
large N :

t = µ

32/321/3 N−2/3
[

1 + O

(
N1

N

)]
. (56)

Now we solve the problem completely in terms of µ, the only parameter which
will remain free for the moment. We will assume that this parameter behaves asymp-
totically as a constant when N → ∞, and solve all the parameters as power series of
1/N .

The parameter y is obtained from Eq. 53, which leads to:

y = 3µ3 + 7µ2 − 10µ + 3

2µ2(15µ − 7)

[
1 + O

(
N−2/3

)]
, (57)

and using Eq. 54 we obtain:

A = ρ(0) =
√

2(15µ − 7)

π2µ3/2(6µ3 − 20µ2 + 21µ − 6)
Z3

[
1 + O

(
N−2/3

)]
. (58)

Then, giving a value for µ, all the parameters required for evaluating the den-
sity-dependent quantities are obtained. We will here test two different approaches for
determining this value:

(i) Determination of r0 = µ/Z from the continuity of the energy density. This
will provide a test of the procedure employed in previous works. Utilizing
e1(r0)/ρ1(r0) = e2(r0)/ρ2(r0) we find:

(3y − 1)µ = −3

5
(1 − t) + 1. (59)

This can be solved by using:

µ = µ0 + µ2 N−2/3, (60)
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where µ0 and µ1 do not depend on N . Using Eqs. 56, 57 we find that µ0 satisfy:

105µ3
0 − 115µ2

0 + 122µ0 − 45 = 0, (61)

which has only one real root, µ0 = 0.495617, very approximate to the values
obtained from the numerical solution of the approach for normal atoms.
Using this value of µ, we obtain for the energy

E = −
(

3

2

)1/3

Z2 N 1/3 + 0.520106Z2 + O
(

Z2 N−2/3
)

, (62)

where the leading correction to the TF energy is appropriate in order (Z2), with
a coefficient approximate to the exact one (1/2). No corrections of order N−1/3

appear.
(ii) Try to match the expansion of the energy. This can be done by means of the

following expression for µ:

µ = µ0 + µ1 N−1/3 + µ2 N−2/3, (63)

with coefficients to be determined by matching the exact energy, given by Eq. 36.
This can be fulfilled with µ0 = 0.494375 and µ1 = −0.00432188. µ2 can be
chosen arbitrarily because it contributes to the next term (Z2 N−2/3).

With these choices of µ0 and µ1 the rest of parameters are given by:

r0 = Z−1
[
0.494375 − 0.00432188N−1/3 + O

(
N−2/3

)]
, (64)

t = r0/rl = N−2/3
[
0.188496 − 0.00164839N−1/3 + O

(
N−2/3

)]
, (65)

C = Z2
[
0.637823 − 0.129338N−1/3 + O

(
N−2/3

)]
, (66)

and

A = ρ(0) = Z3
[
0.783352 − 0.024852N−1/3 + O

(
N−2/3

)]
, (67)

which completes the description of the density. The values for the density-dependent
properties obtained from this method, to be compared to Eqs. 37–41, are:

〈r−2〉 = Z2
[
6.51392 − 3.55347N−1/3 + O

(
N−2/3

)]
, (68)

〈r−1〉 = Z N 1/3
[
121/3 − 1.04777N−1/3 + O

(
N−2/3

)]
, (69)

〈r 〉 = Z−1 N 5/3

[
3

4

(
3

2

)2/3

+ O(N−1)

]
, (70)
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and

〈r2〉 = Z−2 N 7/3

[
9

8

(
3

2

)1/3

+ O(N−1)

]
. (71)

Therefore, with these parameters, the energy is reproduced up to three orders, the
leading terms for ρ(0) and 〈r−2〉 are provided with constant errors of 2.3 and 1%,
respectively, the second term of 〈r−1〉 is given with a constant error of 4.8%. The first
order of the radial expectation values of positive order, which were reproduced by
the original Thomas–Fermi theory are not modified by the present corrections. This
gives us an idea of the accuracy that the application of this method can provide when
applied to real systems.

The scaling of r0, the point beyond which local plane waves has been used for
representing the electron wavefunctions, as Z−1, is the same as the one Schwinger
found [15] for the validity of this approximation.

5 Application to real atoms: computational procedure and results

The computational procedure is simplified if r0 is fixed from the start. We can use an
expansion of the type of Eq. 64, but the optimal coefficient of N−1/3 for the energy
may change when including electron–electron interaction. In addition to this we can
include a coefficient for N−2/3 for a better matching of the energies for small values
of N .

We will describe a computational approach for obtaining the energy, density and
potential of an atom:

The resolution of Eq. 18, as in the standard Thomas–Fermi–Dirac approach is per-
formed via the function χ(x) defined by

V (r) + λ − 1

2π2 = − Ze2

r
χ(x), (72)

which is found by solving the differential equation

d2χ

dx2 = x

[
β +

(χ

x

)1/2
]3

, (73)

where x = r/b, b is a scale factor:

b = 1

2

(
3π

4

)2/3

Z−1/3, (74)

and

β = 3

2

1

(6π Z)2/3 . (75)
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The density in region R2 is found by the relationship

ρ2(r) = 23/2

3π2

{
1√
2π

+
√

Z

r
[χ(r/b)]1/2

}3

, r < rl , (76)

and the constraints for the resolution are:

1. Usual condition in the atomic limit rl = bxl :

χ(xl)/xl = β2/16. (77)

2. Value of the potential at r0:

V (r0) = − Z

r0
χ(x0) − λ + 1

2π2 = − Z

r0
+ N1

r0
+ 〈r−1〉2, (78)

where

〈r−1〉2 = Z

b

[
χ ′(xl) − χ ′(x0)

]
. (79)

3. Potential at rl :

V (rl) = − Z

rl
χ(xl) − λ + 1

2π2 = − Z

rl
+ N

rl
. (80)

4. Normalization condition:

N = N1 + Z
[
xlχ

′(xl) − x0χ
′(x0) − χ(xl) + χ(x0)

]
. (81)

The procedure is as it follows: given particular values of Z , N and r0, we perform
a loop for determining the scaled atomic radius xl . For each xl , we set an initial value
(very small) for χ ′(xl), and, fixing χ(xl) from Eq. 77, we solve numerically the dif-
ferential equation from xl to x0 = r0/b with a fourth order Runge–Kutta method.
We then calculate ρ2(r0), ρ′

2(r0), and find C and A from the matching conditions
ρ1(r0) = ρ2(r0) and ρ′

1(r0) = ρ′
2(r0). After that, N1 is evaluated, λ is obtained from

Eq. 80, and the loop is stopped when Eq. 78 holds within a small error. Now, the nor-
malization condition is applied for defining a new χ ′(xl), and we start again the loop
in x0. The procedure is repeated until χ ′(xl) converges to a stable value. With this
technique, we can solve tens of atoms in a few seconds.

We have applied this procedure and we are able to match very approximately the
formula for the energy given by Eq. 35 with the use of:

r0 = Z−1
(

0.494375 + 0.006Z−1/3 + 0.03Z−2/3
)

. (82)
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(E−E(HF))/|E(HF)|
(ρ(0)−ρ(0)HF)/ρ(0)HF

Z

 ( <r−2> − <r −2>HF)/<r −2>HF
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Fig. 1 Plot of the relative differences of present work estimations with respect to Hartree–Fock values for
the energy (solid line), density at the nucleus (dashed line) and 〈r−2〉 (dotted line) of neutral atoms

Results for the energy, ρ(0) and 〈r−2〉 when using this choice of r0 are illustrated
in Fig. 1 for atoms from Z = 3–100 by their relative differences with respect to
Hartree–Fock values obtained from the wavefunctions of Koga et al. [16].

6 Concluding remarks

In this work we have presented a modified Thomas–Fermi–Dirac method arising from
the minimization of a semiexplicit density functional. Also, we have performed some
improvements on its application, by means of different changes on the constraints.

The weakest assumption of this method, the choice of the matching point has been
studied in detail. The test for the Bohr’s atom shows up that the scaling of r0 as Z−1

gives a correction for the energy by means of a term which scales exactly as the Scott
correction in Thomas–Fermi theory. But the present model does not only provide esti-
mations for the energy. For the lowest-order radial expectation values this test also
shows that the main corrections to Thomas–Fermi theory are incorporated with the
appropriate scaling. The remaining errors seem to be of the order of shell effects.
This is clear for the energy, which from the analysis of the non-interacting electron
atom, the relative errors should be expected of the order of N−1, of the same order as
these effects [17]. As correlation effects are of the same order, it seems that we have
optimized the semiclassical description of atoms. This could serve as a partial tool for
the approach of more complex problems.
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